

Writing A Contact Form
Using PHP

By Chad Jordan – March 24th– 2014

 1

In this guide you will learn:
1. The fundamentals of data communication between HTTP requests and responses
2. Essential markup principles for a clean and simple layout using HTML and CSS
3. A back-end implementation for a simple contact form using PHP

PHP Hypertext Preprocessor is the recursive acronym for the open-source, server-side
programming language known as PHP. PHP has evolved very fast in its maturity on the web,
climbing swiftly from version to version. With PHP, we can:

1. Encrypt data
2. Generate dynamic page content
3. Create, open, read, write, delete, and close files on the server
4. Add, delete and modify data in a database
5. Collect form data
6. Send and receive cookies
7. Control user-access

Let’s briefly look at how PHP communicates. The XHTML Content-Type is a text/html response
header informing the client that the server has returned HTML. The PHP code automatically
generates the HTTP Requests and Responses. An example of making an HTTP request to the
server and the corresponding HTTP response from the server. The PHP processor has two
modes of operation, copy mode and interpret mode. It takes a PHP document file as input and
produces an XHTML document file. When the PHP processor finds XHTML code (which may
include embedded client-side script) in the input file, it simply copies it to the output file. When
it encounters a PHP script in the input file, it interprets it and sends the output of the script to
the output file. PHP is typically interpreted, as is the case with JavaScript. However, PHP
implementations perform
some precompilation, at
least on complex scripts,
which increases the
speed of interpretation.
PHP uses dynamic typing,
as does JavaScript.
Variables are not type
declared, and they have
no intrinsic type. The
type of a variable is set
every time it is assigned a value, taking on the type of that value. Similar to JavaScript, PHP is
far more forgiving than most common programming languages. Dynamic typing is largely
responsible for this, but the dynamic nature of its strings and arrays also contributes. PHP has
an extensive library of functions, making it a flexible and powerful tool for server-side software
development. Many predefined functions are used to provide interfaces to other software
systems such as mail and database systems. As is the case with JavaScript and Perl, language
processors for PHP are free and easily obtainable. Additionally, the PHP processor is an open
source system, available on all platforms.

Introduction

 2

In the past, I have written my fair share of PHP code for contact forms on Flash websites, my
PHP contact form on my old website, corporate data encryption, and used PHP to handle
various content across all of my websites. Now, I am using PHP to create another simple
contact form on my latest website with a few new features and a sleeker layout. The purpose
of this guide is to provide a straightforward visual demonstration of creating and embedding
your own contact form into a website. I will be using PHP code and other markup code directly
from my website, integrated into this guide. My code snippets are demonstrated using the Vim
code editor in Linux.

Most of my PHP code can be transferred from my previous contact form, but the markup
portion of the form is what I’m making significant changes to. For my website, I create a file
called contactform.php which will be used to display the completed form online. Within the
file, I begin by using a require function to call all of the code in my header file to be displayed at
the top of my page. This saves on loading time, and not having to completely copy and paste all
of the extra code every time on each page. On line 5 I’m using a small CSS trick known as the
Cufon.replace function because for this page, I don’t want the same CSS elements tied to my
headers and the middle text of my contact form. Since I’m making a function call, it needs to be
placed inside of a <script> tag for JavaScript. I then add a div id called separator on line 9 so

that I can have a versatile, and editable content block for the user should they wish to add
custom content. The separator content is entirely up to the user, and it won’t be seen until the
user decides to add to it. As far as the CSS elements (div id’s) for my content, the following CSS
code is well into my stylesheet, and covers the elements used for my website, but also what is
used to wrap around the contact page. In my style.css file, Line 337 creates the background
color, and sets the width of my container. The main id is set to four-pixel inputs from left to
right at top, right, bottom, and left. The side id is simply setting the width of the element at
200px and float left, (position left) on the screen. The maincontent id covers the content placed
within the main content element.

Creating the Form Layout

 3

The widget container is designed to hold any content I wish to add such as website widgets,
icons, hyperlinks, or text for information. I place my list items inside of an unordered list to
contain lists of items (UL element with LI elements) to be semantically correct about it. This
also helps screen readers and other technologies that depend on correct semantics to work.

After placing my created content for the maincontent id, and the title header, I insert an
embedded map of my location from Google Maps. This is obviously not required, but I
personally felt it added a nice element to a contact page. The <iframe> tag is a commonly used
tag for embedding dynamically updated content, and or simply for the sake of an embedded
document like this guide. The nice thing about using Google Maps, is the map information will

always be dynamically updated over time by Google, which means that the embedded code on
line 24 will never need to be altered unless I decide to change the location of my business. If
that is done, I simply grab the updated code from Google Maps and embedded it back inside of
the <iframe> tag. Next, I place a couple of break tags, create my inquiry text above the form,
and then call the div and form id elements for the contact form. The following CSS code is
referenced by the contactform tag on line 27:

 4

On line 451 of my stylesheet, I set the element form to zero for margin and padding, a very
common practice for web development. By eliminating all elements of margin and padding, the
user can feel free to go about styling other CSS elements without restraint across all browsers.
As I mentioned in my previous guide entitled, ‘Coding A Basic Website’ consistency is very
important when creating web pages on your websites and I mentioned several of these aspects
of CSS in that guide. On line 452, the fieldset element is used in CSS to group elements within a
form. On line 455, label.sp (label spacing) is a CSS element that controls pixel density for
viewing text on android devices. The value of 3px is added to the natural spacing of the
characters of the text. Span.error on line 456 is simply setting the format to the error messages
should the form need to print any to the user. The remaining code in the above block is just
basic styling for the input of the contact form.

This next block is more of the same styling for the textarea of the contact form. The remaining
CSS is mostly just positioning of the elements within the form. The message ids from lines 473
to 475 is controlling the format of the message field and the text within that field.

 5

Scrolling back up to the previous XHTML block on line 28 the form id needs to reference the
PHP logic for the form functionality. This is why we set:
<form id="contact" action="contact.php" />
because contact.php will be the file used to link the logic to the contact form. The <fieldset>
tag on line 29 begins all user input tags, labels and span tags for the form. The remaining
closing tags simply close out the remainder of the form. I’ve provided HTML comments beside
each closing tag to signify which individual portion of the content id that is being closed out.

Writing the logic for the contact form is relatively straightforward. Starting on line 2, the ! (not)
logical operator returns true if the argument on its right-hand side is not true. It forces the
argument to be evaluated as a Boolean. In this case, when the $_POST array is evaluated as a
Boolean, it will be true if it is not empty and false if it is. Next, from line 4 to line 7 is how we
check for spam. Consider that a lot of spam is checked by using captcha mechanisms. Captchas
are also generally inaccessible for people with disabilities. Another method without making the
user hit redundant matching images is called honeypot. Honeypots are passive, and often
implemented as hidden form fields that bots will fill out and humans won’t. If that hidden form
field has a value, then you know the submission is from a bot and can be rejected. If honeypot
is filled (or hits an error), the form is told to investigate the required values specified in the
arrays. Next, on line 8 I specify the email to which the message will be sent and then assign the
message string to the email_content variable.

The for loop in this next block checks for the required values in the fields, and if it finds an
error, it prints off a message to fill in all of the fields. Line 19 takes the values in the associative
arrays, collects from the form data with $_POST and then stores those values back into
email_content which makes up the string data for “new message”

Writing the Form Logic

6

If all statements pass, then we print a message that the message was sent successfully,
otherwise if not, the user receives an error that the message was not sent.

Once I send the files for the contact form to my server, this is the following result on my
website:

That’s it! This contact form has been tested and is fully functional for any website. Want to
test it? Click here
While I’m sure my contact page will change again over time, I will make sure the same link is
always active for any potential readers that may wish to test it.

https://www.wondercreationstudios.com/contactform.php

 7

My hope is that this guide has been helpful in teaching the process of how contact pages
interact and function using PHP programming. I’ve more recently started learning Laravel PHP,
and would love to put a guide together about the advantages of using frameworks in PHP.
Implementing authentication logic is a good advantage of using Laravel and its security
advantages could make for a great topic. All diagrams and code presented in this guide were
created and written by Chad Jordan for learning purposes only. This PHP code is currently from
the latest version 5.5.10, the above screenshot of the contact form was displayed on Chrome
using Ubuntu Linux 14.04.6 and written using the Vim code editor. For any possible
inquiries such as general questions regarding this guide or other professional inquiries please
feel free to email me at cjordan@wondercreationstudios.com or contact me using my latest
contact form!
Resources Used:

• McFarland, Sawyer David – CSS: The Missing Manual – 1st Edition – 2006
• W3schools.com
• PHP.net

Conclusion

https://www.w3schools.com
https://php.net

